Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Shakoya Paulin,^a Pierre Kelly,^a Kenneth B. Williams,^a Andrea M. Goforth,^b Mark D. Smith,^b LeRoy Peterson Jr^{a*} and Hans-Conrad zur Love^b

^aChemistry Department, Francis Marion University, Florence, South Carolina 29501, USA, and ^bDepartment of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA

Correspondence e-mail: lpeterson@fmarion.edu

Key indicators

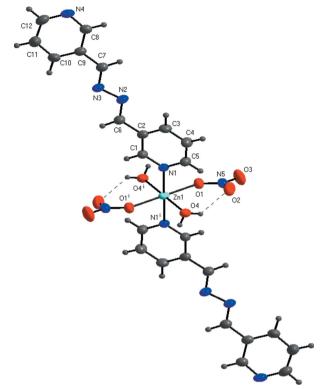
Single-crystal X-ray study T = 150 KMean $\sigma(\text{C-C}) = 0.003 \text{ Å}$ R factor = 0.029 wR factor = 0.082Data-to-parameter ratio = 13.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

catena-Poly[[diaquadinitratozinc(II)]-bis(μ -1,4-di-3-pyridyl-2,3-diaza-1,3-butadiene)]

The polymeric title complex, $[Zn(NO_3)_2(C_{24}H_{20}N_8)(H_2O)_2]_n$, features distorted ZnN_2O_4 octahedra with each Zn^{II} atom being located on an inversion center. Adjacent Zn ions are doubly bridged by two equivalent 1,4-di-3-pyridyl-2,3-diaza-1,3-butadiene ligands to form linear chains.

Received 13 November 2006 Accepted 3 January 2007


Comment

There has been much effort directed at the construction of new coordination polymers due to their potentially interesting and useful properties (Chin *et al.*, 1993; Kitagawa *et al.*, 2004; Janiak, 2003). In this context, we have been highly successful in utilizing *N*,*N'*-bipyridyl-type ligands to link metal centers to form such polymeric materials (Perkins *et al.*, 2005; Khalil *et al.*, 2005; Davis *et al.*, 2004; Dong *et al.*, 2000*a,b*). As a continuation of this work, we report the details of the crystal structure of the title complex, (I), in which 1,4-di-3-pyridyl-2,3-diaza-1,3-butadiene (*L*2) is used to link Zn^{II} centers into one-dimensional chains.

$$\begin{array}{c|c} & & & & \\ & &$$

The crystal structure of (I) is built upon neutral $Zn(L2)_2(OH_2)_2(NO_3)_2$ units (Fig. 1). The Zn^{II} ion is located on an inversion center and is situated in a distorted N_2O_4 octahedral coordination environment. The axial positions are occupied by two N atoms from pairs of equivalent L2 ligands. The equatorial positions are occupied by four O atoms, two from equivalent pairs of water molecules and two O atoms from equivalent pairs of monodentate nitrates (Table 1). For L2, the two pyridyl rings N1/C1-C5 and N4/C8-C12 are twisted at a dihedral angle of 34.6 (1)°. As expected for the nitrate, the N-O bond corresponding to the coordinated O atom is slightly longer than the other two N-O bonds (Table 1). One of the uncoordinated nitrate O atoms is

© 2007 International Union of Crystallography All rights reserved

Figure 1 The structure of (I), with the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are represented by dashed lines. [Symmetry code: (i) 1 - x, 1 - y, -z]

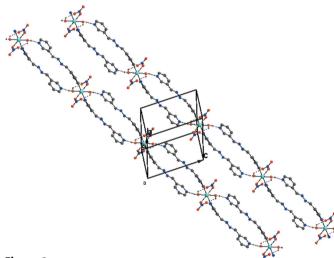


Figure 2
View of the crystal packing in (I) showing the one-dimensional chains. All H atoms except for those of water have been omitted for clarity. Hydrogen bonds are represented by dashed lines.

involved in an intramolecular O4—H4 $B\cdots$ O2 hydrogen bond (Table 2) to a coordinated water molecule located on the same Zn^{II} center.

It is noteworthy that only one of the two pyridyl N atoms of L2 directly coordinates a Zn^{II} ion. The other pyridyl N atom interacts indirectly with an adjacent Zn^{II} ion by forming an outer-sphere O4—H4 $A\cdots$ N4 hydrogen bond (Table 2) with a coordinated water molecule located on the adjacent Zn^{II} center. This interaction, along with the inner-sphere Zn^{II} —N2

coordination bond noted previously, generates a double chain structure (Fig. 2) involving two equivalent L2 ligands. The chains run along the [11 $\overline{1}$] direction with a non-bonded $Zn^{II}\cdots Zn^{II}$ distance of 15.578 (1) Å. To our knowledge, the generation of such a double chain structure involving both inner- and outer-sphere coordination by L2 is the first of its kind for this ligand.

Experimental

All chemicals and solvents were purchased from commercial sources and used without further purification. The L2 ligand (Dong et~al., 2000) was prepared as previously described. Complex (I) was obtained by slow diffusion of an ethanol solution containing zinc nitrate hexahydrate (0.50 mmol) into a dichloromethane solution (8 ml) containing a mixture of L2 (1.0 mmol) and of 4,4'-bipyridine (1.0 mmol). A mixture of yellow, irregularly shaped crystals of (I) and colorless bar-shaped crystals of formula $[Zn^{II}(4,4'-bipyridine)_2-(NO_3)_2\cdot CH_2Cl_2]_n$ were obtained at the interface of the two solutions after several weeks.

Crystal data

$[Zn(NO_3)_2(C_{24}H_{20}N_8)(H_2O)_2]$	$V = 689.12 (16) \text{ Å}^3$
$M_r = 645.90$	Z = 1
Triclinic, $P\overline{1}$	$D_x = 1.556 \text{ Mg m}^{-3}$
a = 7.8267 (11) Å	Mo $K\alpha$ radiation
b = 8.5320 (11) Å	$\mu = 0.96 \text{ mm}^{-1}$
c = 11.7409 (16) Å	T = 150 (1) K
$\alpha = 81.113 \ (2)^{\circ}$	Irregular fragment, yellow
$\beta = 73.696 (2)^{\circ}$	$0.40 \times 0.26 \times 0.14 \text{ mm}$
$\gamma = 66.468 \ (2)^{\circ}$	

Data collection

Bruker SMART APEX CCD	6421 measured reflections
diffractometer	2831 independent reflections
ω scans	2720 reflections with $I > 2\sigma(I)$
Absorption correction: multi-scan	$R_{\rm int} = 0.027$
(SADABS; Bruker, 2001)	$\theta_{\mathrm{max}} = 26.4^{\circ}$
$T_{\min} = 0.670, T_{\max} = 0.870$	

Refinement

refinement

•	
Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0472P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.029$	+ 0.1395P
$wR(F^2) = 0.082$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.07	$(\Delta/\sigma)_{\rm max} < 0.001$
2831 reflections	$\Delta \rho_{\text{max}} = 0.28 \text{ e Å}^{-3}$
205 parameters	$\Delta \rho_{\min} = -0.27 \text{ e Å}^{-3}$
H atoms treated by a mixture of	Extinction correction: SHELXL97
independent and constrained	Extinction coefficient: 0.026 (4)

Table 1Selected geometric parameters (Å, °).

Zn1-O1	2.1839 (12)	N5-O3	1.236 (2)
Zn1-O4	2.0795 (12)	N5-O2	1.239 (2)
Zn1-N1	2.1487 (13)	N5-O1	1.2653 (18)
$O1-Zn1-O1^{i}$	180	O4-Zn1-N1	89.21 (5)
O4-Zn1-O1	95.05 (5)	$N1-Zn1-O1^{i}$	87.98 (5)
$O4^{i}$ -Zn1-O1	84.95 (5)	$N1^{i}$ - $Zn1$ - $N1$	180
$O4-Zn1-O4^{i}$	180		

Symmetry code: (i) -x + 1, -y + 1, -z.

metal-organic papers

Table 2 Hydrogen-bond geometry (Å, °).

D $ H$ $\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	D $ H$ $\cdot \cdot \cdot A$
$ \begin{array}{c} O4 - H4A \cdot \cdot \cdot N4^{ii} \\ O4 - H4B \cdot \cdot \cdot O2 \end{array} $	0.79 (3)	1.97 (3)	2.750 (2)	170 (2)
	0.78 (3)	2.29 (3)	2.856 (2)	130 (2)

Symmetry code: (ii) x + 1, y + 1, z - 1.

The water-bound H atoms were refined without constraint; see Table 2. The remaining H atoms were included in the riding-model approximation, with C-H=0.95 Å and $U_{\rm iso}(H)=1.2U_{\rm eq}(C)$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Sheldrick, 2000) and *DIAMOND* (Brandenburg, 2005); software used to prepare material for publication: *SHELXTL*.

Financial support from the National Science Foundation, awards CHE-0314164 and CHE-0315152, is gratefully acknowledged.

References

- Brandenburg, K. (2005). *Diamond*. Version 3.0e. Crystal Impact GbR, Bonn, Germany.
- Bruker (2001). SMART (Version 5.625), SAINT-Plus (Version 6.22) and SADABS (Version 2.05). Bruker AXS Inc., Madison, Wisconsin, USA.
- Chin, C., Suslick, K. S. & Kenneth, S. (1993). Coord. Chem. Rev. 128, 293-
- Davis, H., Peterson, L. Jr, Goforth, A. M., Smith, M. D., Zhang, P. & zur Loye, H.-C. (2004). J. Chem. Crystallogr. 34, 299–306.
- Dong, Y.-B., Smith, M. D., Layland, R. C. & zur Loye, H.-C. (2000). Chem. Mater. 12, 1156–1161.
- Dong, Y.-B., Smith, M. D. & zur Loye, H.-C. (2000a). *Inorg. Chem.* **39**, 4927–4935
- Dong, Y.-B., Smith, M. D. & zur Loye, H.-C. (2000b). J. Solid State Chem. 155, 143–153.
- Janiak, C. (2003). Dalton Trans. pp. 2781-2804.
- Khalil, S., Peterson, L. Jr, Goforth, A. M., Hansen, T. J., Smith, M. D. & zur Loye, H.-C. (2005). J. Chem. Crystallogr. 35, 405–411.
- Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375
- Perkins, W. J., Maxwell, T., Goforth, A. M., Smith, M. D., Peterson, L. R. Jr & zur Loye, H.-C. (2005). Acta Cryst. E61, m2047–m2049.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2000). SHELXTL. Version 6.1. Bruker AXS Inc., Madison, Wisconsin, USA.